Meck 8 PART 1

CHEM 1061-003 9 MARCH 2015 WEEK 8, PART 1 NOTES

ANNOUNCEMENTS:

THIS WEDNESDAY IS EXAM 2, 9:00 - 10:00 PM

ROOM ASSIGNMENTS ARE IDENTICAL TO THOSE FOR EXAM 1 AND ARE ACCORDING TO THE FIRST LETTER OF YOUR LAST NAME (OR SURNAME):

PHYSICS 150 A-L

(TATE LAB OF PHYSICS 150)

STSS 230 M-Z

DO NOT TAKE THE EXAM IN THE WRONG ROOM!

SEE HANDOUT FOR DETAILS ON THE EXAM. IT WILL COVER CH 5-7 AND HAVE SOME Q'S BASED ON CH 2-4.

WEDNESDAY'S OPTIONAL LECTURE
WILL INVOLVE REVIEW OF SELECTED
Q's FROM PRACTICE EXAM 2 OF 2014,
Please E-MAIL ME ANY REQUESTS:
ellis@umn.edu

TOPICS TODAY:
(NONE OF THIS STUFF WILL
BE ON EXAM 2- BUT IT WILL BE
ON EXAM 3!!)
1. G.S. ELECTRONIC CONFIG
OF POLYELECTRONIC ATOMS

(i) RULES FOR FILLING ORBITALS
(ii) HUND'S RULES: MAXIMIZING
THE NUMBER OF UNPAIRED
ELECTRONS IN A PARTIALLY
FILLED SUBSHELL

2. CORE AND VALENCE ELECTRONS

3. KEY IMPORTANCE OF VALENCE ELECTRONS

4. ATOMIC STRUCTURE, CHEMICAL
PROPERTIES AND SELECTED
FAMILIES OF ELEMENTS IN THE
PERIODIC TABLE
(i) ALKALI METALS (gp 1)
(ii) ALKALINE EARTHS (GP 2) AND A LITTLE
(iii) HALOGENS

AGUT ALVANVA (6 3)

5. SOME DIMERIZATION REXNS OF PARAMAGNETIC ATOMS

ATOMS WITH UNPAIRED ELECTRONS

show LAST FRIDAY

-3-

GROUND STATE ELECTRONIC
CONFIGURATIONS OF
POLYELECTRONIC ATOMS

1s<2s<2p<3s<3p<4s<3d<4p<5s

RULES FOR DETERMINING THE MOST STABLE ELECTRONIC CONFIGURATIONS OF NEUTRAL ATOMS

a. ELECTRONS ARE ADDED TO ORBITALS IN ORDER OF INCREASING ENERGY. EACH LEVEL IS USUALLY FILLED COMPLETELY BEFORE BEGINNING THE NEXT ONE. E.G.,

28 Ni 15²25²26³35²36⁴35²36

OTE VALENCE

37 Rb 15²25²26⁶35²36⁶45²36¹⁹46⁵55¹

OTE VALENCE

TO CORE

VALENCE

CORE

VALENCE

CORE

VALENCE

CORE

VALENCE

CORE

1s<2s<2p<3s<3p<4s<3d<4p<5s

b. HUND'S RULE: ELECTRONS ARE
ADDED TO SUBSHELLS WITH PARALLEL
OR ALIGNED SPINS TO THE MAXIMUM
POSSIBLE EXTENT TO MINIMIZE
INTERELECTRONIC REPULSIONS.
THUS, HUND'S RULE MUST BE SATISFIED
FOR AN ATOM TO ACHIEVE ITS MOST
STABLE OR GROUND ELECTRONIC STATE

EXAMPLES:

Excited (only property of the state of the sta

ATOMS OR MOLECULES WITH UNPAIRED ELECTRONS ARE ATTRACTED TO A MAGNETIC FIELD AND ARE SAID TO BE <u>PARAMAGNETIC</u>

a. CORE ELECTRONS ARE ELECTRONS
IN COMPLETELY FILLED SHELLS
(n = 1, 2, ...) AND/OR HAVE THE SAME
ELECTRONIC CONFIGURATIONS AS
THE ESPECIALLY STABLE INERT GASES
IN NEUTRAL OR CATIONIC ATOMS

COMPLETELY FILLED SHELLS ARE ESPECIALLY STABLE AND THUS CORE ELECTRONS HAVE VERY HIGH IONIZATION ENERGIES AND ARE RARELY LOST (OR SHARED) IN CHEMICAL REXNS; I.E., THEY ARE VERY TIGHTLY BOUND TO THE NUCLEI OF ATOMS. EXAMPLE:

20 Ca (Ar) 452
VALENCE
ELECTROPS

CORE
ELECTROPS

(FAVERED

CORE AND VALENCE ELECTRONS
b. COMPLETELY FILLED d and fSUBSHELLS ALSO USUALLY
FUNCTION AS CORE ELECTRONS
IN ATOMS
EXAMPLE:

34Se [Ar] 452 Bd 94p4

VALUEL CLECTAGES

C EL ECTRONIS IN PARTIAL LY ELL ED

c.ELECTRONS IN PARTIALLY FILLED SHELLS (OR SUBSHELLS) ARE CALLED VALENCE ELECTRONS, WHICH ARE OFTEN LOST OR SHARED IN REXNS.

EXAMPLES:

MONMETALLIK

CL AND
METALLIK

CL AND
METALLIK

MIN SUSTABLE

NO CLO

METALLIK

MIN SUSTABLE

IN CLO

THE MALL

MIN MIN MIN

THE MALL

THE MAL

CORE AND VALENCE ELECTRONS d. THE OUTERMOST ELECTRONS IN ANIONIC ATOMS (H(1-), O(2-), F(1-), S(2-), CI(1-), ETC.) WITH COMPLETELY FILLED SHELLS (OR SUBSHELLS) ARE CONSIDERED TO BE VALENCE **ELECTRONS BECAUSE THESE ARE** OFTEN SHARED OR LOST IN REXNS.

EXAMPLES: 16**S(2-)**:

VALLE ELECTRONS HOWEVER, THE OUTERMOST ELECTRONS IN CATIONIC ATOMS THAT ARE ISOELECTRONIC WITH THE INERT GASES

(He, Ne, Ar, Kr, Xe) ARE CORE ELECTRONS

EXAMPLES:

[Neon]-like core (15252p6), BUT 13AI(3+) EVEN MORE RESISTANT THAN MEON TUNANDS LOSING OR SHARING ITS CORE

19**K(1+)**

ARGON- LIKE COLE BUT K CATED HOLDS 3 your ELECTRONS MURE TIGHTLY THAY ARGUY.

-8-

SUMMARY OF IMPORTANT POINTS ON THE ELECTRONIC CONFIGURATIONS OF ATOMS (OR ATOMIC STRUCTURE)

1. ELECTRONS ARE ADDED TO ORBITALS ACCORDING TO THEIR RELATIVE ENERGIES: THE MOST STABLE ORBITALS (I.E., THE ONES CLOSEST TO THE NUCLEUS) ARE FILLED FIRST 1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p... NOTE UNUSUAL ORDERs:

4s<3d<4p and 5s<4d<5p

HOT BE TON WILL EXAMINED ON THE

4s FILLS BEFORE 3d DUE TO A GREATER PENETRATION OF THE 4s ORBITAL INTO THE INNER "ARGON CORE" [Ar] ELECTRONS, BECAUSE, ON AVERAGE, ELECTRONS IN THE 4s ORBITAL ARE CLOSER TO THE NUCLEUS THAN THOSE IN THE 3d ORBITALS.

SIMILARLY, 5s FILLS BEFORE 4d

-9

SUMMARY OF IMPORTANT POINTS

2. HUND'S RULE IS IMPORTANT IN
DETERMINING THE MOST STABLE
OR GROUND STATE OF AN ATOM
WITH A PARTIALLY FILLED
SUBSHELL. THE ATOM WILL
ALWAYS CONTAIN THE MAXIMUM
NUMBER OF UNPAIRED ELECTRONS
(WITH SAME ms VALUE) TO
MINIMIZE INTERELECTRONIC
REPULSIONS. (NUMBER OF UNPAIRED ELECTRONS = "# upe")

EXAMPLES:

SKITES (NUMATION): THE OF THE PROPERTY OF THE PROPE

SUMMARY OF IMPORTANT POINTS
3. CORE ELECTRONS ARE SO TIGHTLY
HELD BY NEUTRAL OR CATONIC ATOMS
THAT THEY ARE NOT LOST OR SHARED
IN CHEMICAL REACTONS (EXCEPT WITH
THE BARE PROTON, H(1+), A SUPERREACTIVE SUB-ATOMIC PARTICLE THAT
IS ONLY LONG-LIVED IN A HIGH VACUUM)

a. INERT GAS CONFIGURATIONS FOR NEUTRAL AND CATIONIC ATOMS:

2He 152 or 34 15

10Ne (He] 25246 or 12 (Mg2+ [He] 25246 = [Ne]

18Ar [Ne) 3526 or 20(a [Ne) 35236 = "[Ar]"

b. COMPLETELY FILLED d-ORBITALS FOR NON-TRANSITION METALS (INCLUDING METALLOIDS AND NON-

SUMMARY OF IMPORTANT POINTS
4. ELECTRONS ON AN ATOM THAT ARE
LOST OR SHARED IN CHEMICAL REXNS
ARE CALLED VALENCE ELECTRONS.
VALENCE ELECTRONS ARE ALWAYS
IN THE OUTERMOST ORBITALS OF
AN ATOM.

a. ELECTRONS IN PARTIALLY FILLED SHELLS/SUBSHELLS ON ANY ATOM

b.ELECTRONS IN COMPLETELY FILLED OUTERMOST SHELLS/SUBSHELLS IN ANIONIC ATOMS

₁H(1-)

(176)- BUT BOTH ELECTRONS IN

(14) CORE 7 7 N(3-)

13 23222 1

VALLUCK

ELECTROPS

NSON-LIKE, BUT N(3-) CONTAINS

8 VALENCE ELECTROPS — JO

N(3-) CAN BE CONVERTED TO NO3,

WHICH CONTAINS N(5+),

AN 8 ELECTROP UXIDATION I

IMPORTANCE OF VALENCE ELECTRONS:

THE CHEMICAL PROPERTIES OF FAMILIES OF ELEMENTS, E.G.,
THE ALKALI METALS (GP 1) OR
THE HALOGENS (GP 17) ARE OFTEN
QUITE SIMILAR BECAUSE THEY HAVE
IDENTICAL NUMBERS OF VALENCE
ELECTRONS. THESE SIMILARITIES
INSPIRED DMITRY MENDELEEV IN THE
LATE 19th CENTURY TO CREATE THE
PERIODIC TABLE OF THE ELEMENTS.

WE WILL EXPLORE THESE IDEAS NEXT.

ATOMS, VALENCE ELECTRONS, THE PERIODIC TABLEWOW!

ATOMIC STRUCTURE, CHEMICAL REACTIVITY AND FAMILIES OF ELEMENTS IN THE PERIODIC TABLE

a. ALKALI METALS (group 1)

(i) ALL HAVE THE ELECTRONIC CONFIG:

[INERT GAS CORE] ns¹, n>1

(ii) ALL READILY LOSE ONE e(-)
IN CHEMICAL REXNS TO PRODUCE
SALTS CONTAINING ALKALI METAL
CATIONS, M(+).

EXAMPLES:

3Li [He] 2s¹ HIGHEST IONIZATION ENERGY

11Na [Ne] 3s¹

19K [Ar] $4s^1$ $M \rightarrow M^+ e^-$

37Rb [Kr] 5s⁴

55Cs [Xe] 6s¹

87Fr [Rn] 7s¹

PROBABLY LOWEST IONIZATION ENERGY (OF ANY ELEMENT)

(*unknown to date)

- a. SOME CHEMICAL REXNS OF ALKALI METALS
- (i) ALL ARE VERY STRONG REDUCING AGENTS AND READILY DISPLACE HYDROGEN GAS FROM WATER TO GIVE ALKALI METAL HYDROXIDES.

(ii) ALL REDUCE HALOGENS TO GIVE ALKALI METAL HALIDES

(iii) SIMILAR REXNS OCCUR WITH ELECTRARE STOUGHASS ELEMENTAL S AND P TO PRODUCE EXPECTED SULFIDE, S(2-), AND PHOSPHIDE, P(3-), SALTS

- b. ALKALINE EARTH METALS (gp 2)
- (i) ALL HAVE THE ELECT. CONFIG.:
- [INERT GAS CORE] ns ; n>1
- (ii) ALL READILY LOSE 2 ELECTRONS
- IN REXNS TO PRODUCE SALTS
- **CONTAINING M(2+) IONS (HOWEVER,**
- Be(2+) COMPOUNDS ARE OFTEN
- MUCH LESS IONIC IN CHARACTER
- THAN ANALOGOUS ONES WITH
- THE LARGER GP 2 ELEMENTS)

20Ca [Ar]
$$4s^2$$
 $M \rightarrow M^{2+} + 2e^{-}$

EXAMPLE OF REXN OF CALCIUM WITH WATER (SHOWN EARLIER IN CLASS):

CIVE			
	Activity Series of		
	Metals	1	
	Li	١	
	K	l	
	Ba	ŀ	
	Ca	ı	
	Na	١	
	Mg	١	
	A1	١	
	Mn	l	
	Zn	l	
	Cr	١	
	Fe		
	Cd		
	Co		
	Ni		
	Sn	1	
	Pb	1	
	H_2	t	
	Cu	1	
	Hg		
	Ag	1	
		- 1	

Au

Cons

Core

c. HALOGENS (gp 7 or 17)

(i) ALL HAVE THE ELECT. CONFIG:
[INERT GAS CORE] ns?np5; n>1 +> BUT Br + I ALSO COPTAIN (N-1)d CONE ELECTROPS -

(ii) ALL READILY GAIN ONE e(-)
IN MANY REXNS WITH METALS BY: [A] 45
TO PRODUCE COMPOUNDS
CONTAINING HALIDE IONS,
OR X(-), WHERE THE LATTER
HAS THE FAVORED ELECTRONIC
STRUCTURE OF AN INERT GAS

Br + e Br - kryeton-1:ku

FLUORINE NEVER-OJES ANY PALSINES CHECTROPS CHEMICAL NEVERS THIS SENSE

He, Ne, - Ar

(iii) ALL EXCEPT FLUORINE CAN BE OXIDIZED TO PRODUCE CMPDS CONTAINING HALOGENS IN THEIR MAX O.N. OF +7; ESPECIALLY IMPORTANT ONES: THE PER-HALATE ANIONS, [XO4](1-), PERCHLORATE, PERBROMATE AND PERIODATE ANIONS.

IN THIS FASHION, CI, Br and I FORMALLY LOSE ALL OF THEIR 7 VALENCE ELECTRONS IN CHEMICAL COMBINATIONS C. EXAMPLES OF REXNS
INVOLVING HALOGENS
(NOTE: MOLECULAR
HALOGENS, X2, ARE USED
AS SOURCES OF ATOMIC X
IN THESE REXNS)
• REDUCTION OF HALOGENS
BY METALS (ALL METALS REACT
READILY WITH HALOGENS,
INCLUDING GOLD, Au, AND
PLATINUM, Pt, AT ROOM T.)

EXAMPLE WITH ALUMINUM Alw+ } Fry - AlF3

• OXIDATION OF THE HEAVIER HALOGENS IS EASIEST FOR I, MORE DIFFICULT FOR CI, Br.

MOST INTERESTING IS THE OXIDATION OF I₂ BY CI₂ TO PRODUCE PERIODATE SALTS:
I₂ + 7 CI₂ + 16 OH(-)----> 2 IO₄(-) +
14 CI(-) + 8 H₂O
***THIS REXN WILL NOT APPEAR
ON AN EXAM!!!

NOTE: IODINE IS A REDUCING AGENT IN THIS REXN! (UNUSUAL FOR A HALOGEN) Cl or Br.

d. BRIEF INTRODUCTION TO
THE DIMERIZATION REXNS OF
ATOMS HAVING UNPAIRED
ELECTRONS: THE STRONG
TENDENCY OF ESPECIALLY
NONMETALLIC ATOMS TO
FORMALLY ACHIEVE THE
ELECTRONIC CONFIGURATION
OF AN INERT GAS BY
SHARING OF ELECTRONS!

(i) ATOMS WITH ONE UNPAIRED ELECTRON EACH DIMERIZE TO GIVE A DIATOMIC MOLECULE CONTAINING A SINGLE BOND BETWEEN THE ATOMS:

(ii) ATOMS WITH TWO
UNPAIRED ELECTRONS
EACH WILL DIMERIZE TO
GIVE A DIATOMIC MOLECULE
CONTAINING A DOUBLE BOND
BETWEEN THE TWO ATOMS:

(iii) ATOMS WITH THREE UNPAIRED ELECTRONS WILL DIMERIZE TO FORM A DIATOMIC MOLECULE HAVING A TRIPLE BOND BETWEEN THE TO ATOMS:

WEEK B PART Z

CHEM 1061-003 13 MARCH 2015

WEEK 8, PART 2 NOTES

(NOTE: THE 11 MAR LECTURE INVOLVED

A REVIEW OF EXAM 2 TOPICS)

AVG SCORE ON EXAM 2: 66%

BRIEF DISCUSSION OF THE EXAM RESULTS

TOPICS TODAY:

1. FINISH CH 8

a. GROUND ELECTRONIC CONFIGS

OF ATOMIC IONS OF MAIN GROUP

(s,p block) ELEMENTS.

b. IMPORTANT PROPERTIES OF

POLYELECTRONIC ATOMS

(i) SIZE OF NEUTRAL ATOMS

(ii) IONIZATION ENERGIES OF

VALENCE AND CORE ELECTRONS

(iii) ELECTRON AFFINITY (which is

NOT the same as "electronegativity")

(iv) COMPARISONS OF THE SIZES

QF ATOMIC NEUTRALS, CATIONS,

AND ANIONS.

2. INTRO TO CH 9: "MODELS OF

CHEMICAL BONDING"

a. IONIC OR ELECTROSTATIC BONDS

b. COVALENT BONDING

c. METALLIC BONDING

DEMO FINALE: ACETONE

PEROXIDE BATTLES THE GREEN DRAGON

AFTER BREAK 1

RESULTS ON EXAM 2
GENERALLY QUITE GOODEXCEPT ON Q'S INVOLVING
MERCURY(I) CHLORIDE, WHICH
CONTAINS Hg2(2+), (Answer
was on last page of exam under

"Solubility Guidelines") AND SELECTING

THE MOST STABLE FORM OF AN ELEMENT AT 25°C (liquid Br2) AND NOT I2(g)

THIS WAS A DEMO!

HOW ARE YOU DOING SO FAR

IN LECTURE?

IN LLCTUIL:	
SUM OF SCORES ON	VERY
EXAMS 1 AND 2	APPROXIMATE
	_GRADES
171-200	A- TO A
_136-170	B- TO B+
100-135	C-TOC+
80-99	D TO D+

IF YOUR TOTAL SCORE IS < 100
YOU WILL NEED TO REDOUBLE
YOUR EFFORTS TO RECEIVE A
SATISFACTORY GRADE IN 1061

HOWEVER, THERE IS HOPE(!)
BECAUSE EXAM 3 AND THE FINAL
COUNT FOR 60% OF YOUR TOTAL
REMAINING POINTS, SO THERE IS A
CONSIDERABLE OPPORTUNITY OF
IMPROVING YOUR GRADE.
(ESPECIALLY ON THE FINAL, WHICH
REPRESENTS 40% OF YOUR SCORE).
HOWEVER, BE CAREFUL SINCE MANY
OF THE REMAINING TOPICS (CH 8-12, 15)
INVOLVE QUALITATIVE OR DESCRIPTIVE
ASPECTS OF CHEMISTRY, WHICH MANY
OF YOU HAVE STRUGGLED WITH ON
1061 EXAMS.

(FOR EXAMPLE, ON THE 3rd EXAM, ONLY 2-4 QUESTIONS WILL LIKELY REQUIRE A CALCULATOR).

Activity Series of Metals Li K Ba Ca Na Mg Al Mn Zn Fe Cd Co Ni GOD Sn REDW Pb 6 H_2 Cu READI Hg Ag DISL Au

Solubility Guidelines for Ionic Compounds in Water <u>Soluble</u> Exceptions GIVES None NH_4^+ None Na^{\dagger} K^{+} None HSOLUBLE Hg2(12! None NO_3^- ClO₄ None None $C_2H_3O_2$, Hg_2^{2+} , and Pb^{2+} compounds Cl', Br', I' Cu⁺, Ag Ba²⁺, Sr²⁺, Ca²⁺, Ag⁺, and Pb²⁺ compounds SO_4^{2-} Insoluble **Exceptions** Li⁺, Na⁺, K⁺, Ba²⁺, Sr²⁺, Ca²⁺ compounds OH Mg²⁺, Ca²⁺, Sr²⁺, and Ba²⁺, Li⁺, Na⁺, K⁺, NH₄⁺ compounds S^{2-} CO₃²-Li⁺, Na⁺, K⁺, NH₄⁺ compounds PO_4^{3} Li⁺, Na⁺, K⁺, NH₄⁺ compounds

speed of light = c = 2.9979 x 10^8 m/s Planck's constant = h = 6.626 x 10^{-34} J•s $E_n = -2.178$ x 10^{-18} J(Z²/n²)/atom = -1312.0 kJ (Z²/n²)/mol E = 1.197 x $10^5/\lambda$ for E in kJ/mol, λ in nm E = 2.31 x 10^{-19} kJ•pm (Q1Q2/d); $E_{molar} = 1.39$ x 10^5 kJ•pm (Q1Q2/d). PV = $nR_{gas}T$ $N_A = 6.022$ x 10^{23} mol⁻¹ $R_{gas} = 0.0821$ L•atm•mol⁻¹•K⁻¹ = 8.314 J•K⁻¹•mol⁻¹ molar volume of an ideal gas at STP = 22.414 L STP = 0 °C and 1 atm pressure; 0 K = -273.2 °C

1 atm = 101.3 kPa = 14.7 lb/in² = 760 torr $\Delta H^{\circ}_{rxn} = \Sigma n_p \Delta H_f^{\circ}$ (products) - $\Sigma n_r \Delta H_f^{\circ}$ (reactants)

 $\Delta H^{\circ}_{rxn} = \Sigma BE$ (reactant bonds broken) - ΣBE (product bonds formed)

PERIODIC CHART OF THE ELEMENTS

IN IIIA IIIB IVB VB VIB VIIB VIII IB IIB IIIA IVA VA VIA VIIA GASES

THE CELETIVE TO HISTORY

RELATIVE TO HISTORY

RESEASON

WHY H. DIMINITES TO GIVE HIS

BOTH Hg. AND H. ARE FREE RADICALS!

1. FOR MAIN GROUP ATOMS
(GPS 1A-7A) ELECTRONS ARE
REMOVED FROM OR ADDED
TO THE VALENCE SHELL OF
THE NEUTRAL ATOMS.
ALWAYS REMOVE/ADD ELECTRONS
EROM/TO THE OUTERMOST
SUBSHELL FIRST (np BEFORE ns; ns
BEFORE (n-1)d)e.g., 4s BEFORE 3d.
EXAMPLES; DETERMINE THE MOST
STABLE EC's AND # UPE's OF:
EC #UPE's

12Mg(0) - e(-) ----> Mg(+)[Ne]35 - e -> [Ne]35 16S(0) + e(-) -----> S(-)[Ne]3s23p4 + e- [Ne]3s23p5 or :50 CDIDATHE-LIKE ELECTRONS ONLY 31Ga(0) - 2 e(-)----> Ga(2+) [Ar] 452319401 -21 [Ar] 45'36" d SUBSHELL REMAINS FILLED CORE (N = 3 SUELL FILLED SHTIRELY) 34Se(0) - e(-) -----> Se(+) OF COMPLETELY FILLED [An]4523d1044 -e [An]4523d104,3 DUAD'S RULE PREDICTS THE HALF-FILLED 4 PSUBJELL WILL HAVE 3 SPIN ALIGHED ELECTRONS IN DIFFERENT ORBITALS; i.e.

-6-

2. THE MOST STABLE IONS IN CMPDS OF MAIN GROUP ELEMENTS (s,p-BLOCK) HAVE EITHER NOBLE GAS OR "PSEUDO-NOBLE GAS" EC's, e.g. [Ar]3d¹⁰ RESULTS:

(i) Gp 1A, 2A METALS AND ALUMINUM ARE REDUCING AGENTS IN MOST OF THEIR CHEMISTRY

THEY REACT WITH METALS

ALSO NOTE:

6 C [He] 2522,2

132Ge [Ar] 452 [310] 4,2

So Sn [Kn] 552 [410] 5,2

Thus, All (4)

FAMILY OF
ELEMENTS HAVE

THE SAME

NUMBER 4DD

TYPES OF
VALUNCE ELECTRONI:

NS 272

NS 272

"CARTOON" OF ELECTRON SHELLS IN ATOM

a. FOR ATOMS OF THE SAME FAMILY OF ELEMENTS (GP 1. GP 2. ETC) AND CHARGE, Q. THE ATOMS BECOME LARGER AS ONE GOES DOWN A COLUMN: E.G.,

Li < Na< K < Rb < Cs (largest)

VOTENCE

23456

b. FOR ATOMS OF SAME CHARGE, Q, AND SAME SHELL (value of n) THE ATOMS BECOME SMALLER AS THE NUCLEAR CHARGE, Z, INCREASES; E.G.,

Li> Be> B> C> N > O> F > Ne (smallest)

7: +10

radius. A plot of atomic radius of elements in periods 1-6 shows a periodic change: the radius usually decreases through a period (except for transition metals-don't worry about these!) to the noble gas and then increases suddenly at the next alkali metal

BOTTOM LINE: FOR A GIVEN SHELL OR PERIOD (value of n) GP 1 METALS ARE THE LARGEST AND NOBLE GASES ARE THE SMALLEST FOR NEUTRAL ATOMS

* PM = PICOMETER = 10-12 METER
"1 TRILLIANITH" OF A METER

MORE CONVENTIONAL DIAGRAM SHOWING THE CHANGE IN ATOMIC RADII AS THE NUCLEAR CHARGE INCREASES ACROSS A SHELL

Figure 8.15 Atomic radii of the main-group and transition elements.

RADII IN PICOMETERS = 10-12 m

4. FIRST IONIZATION ENERGY, IE1,
IS THE ENERGY REQUIRED TO
REMOVE THE WEAKEST BOUND OR
OUTERMOST ELECTRON FROM AN
ATOM IN THE GAS PHASE. THIS VALUE
IS ALWAYS POSITIVE (REQUIRES
ADDITION OF ENERGY) FOR NEUTRAL
ATOMS REGULATION ATOMS REGISTAL

A(g) -----> A(+) + e(-); IE1 > 0

a. TRENDS FOR IE1 VALUES FOR MAIN GROUP ATOMS ACROSS A ROW

THERE ARE SOME EXCEPTIONS IN IE1 TRENDS
NOT SHOWN IN THIS PLOT, DUE TO THE SPECIAL
STABILITY OF HALF-FILLED np SUBSHELLS IN
ATOMS (WE WILL ONLY WORRY ABOUT N vs O)

THUS, AS THE VALUE OF n
INCREASES, THE OUTERMOST
ELECTRONS BECOME LESS
TIGHTLY BOUND TO THE ATOM.
IE1 TRENDS DOWN A COLUMN:

H>>> Li > Na > K > Rb > Cs

F > CI > Br > I > At

He> Ne > Ar > Kr > Xe > Rn

He> Ne > Ar > Kr > Xe > Rn

* 2372 IS * 2080 KJ

** ATOMS WITH DIGHET 1E, VALUES!

TUE DIGHEST IE, OF ANY NEUTRAL ATOM!

PLOT OF IE1 OF GASEOUS ATOMS AS A FUNCTION OF ATOMIC NUMBER

 $A(g) ---- A(+) + e(-) \Delta E = IE_1$

Fig. 8.17 A plot of IE₁ VS ATOMIC NUMBER FOR THE ELEMENTS OF PERIODS 1-6 SHOWS A PERIODIC PATTERN: THE LOWEST VALUES OCCUR FOR GP 1 METALS AND THE HIGHEST FOR THE NOBLE GASES. NOTICE THE "FUNNY BUSINESS" IN Be vs B and N vs O.

MOTE THAT IE, VALUED FOR THE
MOBLE GASES ARE ALWAYS THE DIGHEST
FOR A GIVEN SHELL (N=1,2,3... ctc.)—
ATTESTING TO THEIR ESPECIALLY STABLE
ELECTRONIC GRUND STATES

SIMILAR PLOT OF IE1 VS Z SHOWING DIFFERENCES OF IE1 WITHIN COLUMNS (FAMILIES OF ELEMENTS)

*NOTE THE UNUSUALLY
HIGH IE1 OF ATOMIC N,
ARISING FROM THE
SPECIAL STABILITY OF
ITS HALF-FILLED 2p
SUBSHELL

SAMPLE QUESTIONS:

PREDICT WHICH ATOM HAS THE LARGEST IE VALUE (THIS IS THE ATOM THAT IS MOST DIFFICULT TO IONIZE)

(i) B, O, of F

(ii) N, P, or As

(iii) C, N, or O (careful!)

ESPECIALLY STABLE
202 SUBJUSTIC OF
ATTEMIC NO)
GIVES IT
AN UNISUALLY
PIGH IEN VALUE

CONSIDER THE

JEY OF ATOMIC O

TO BE RELATIVELY LOW

BECAUSE WHEN IT

LOJES AN ELECTRON, THE

PRODUCT OT, HAS

AN ESPECIALLY STABLE HALF-FILLED

2 03 SUBSIDELL, LIKE NEUTRAL N!

1 Maportarii

COMPARISON OF IONIZATION ENERGIES OF CORE AND VALENCE ELECTRONS

EXAMPLE: Na and Mg (VALUES IN kJ/mol)

Na [Ne]3s
$$496$$
 4560 [Ne]3s 738 1445 7330 [Ne]3s²

NET RESULTS:

CONCLUSIONS:

IONIZATION ENERGIES FOR
REMOVAL OF CORE ELECTRONS
ARE SO HIGH THAT THE MAX
POSSIBLE O.N.'s OF AN ATOM
IN A CMPD NEVER EXCEEDS ITS
"GROUP FAMILY NUMBER"

1A 2A 3A 4A 5A 6A 7A 8A n = 5 Rb Sr In Sn Sb Te I Xe MAX O.N. +1 +2 +3 +4 +5 +6 +7 +8

HOWEVER, THE IONIZATION
ENERGIES FOR VALENCE
ELECTRONS OF THE FOLLOWING
ATOMS ARE SO HIGH THAT THEY
NEVER ACHIEVE MAX. O.N.'s
IN COMPOUNDS:

He, O, F, Ne, Ar, Kr

EXAMPLES:

(1/8) S₈ + xcess F₂ -----> SF₆ BUT O₂ + xcess F₂ -----> no rexn (20°C)

Xe + xcess F_2 ----> Xe F_2 (20°C, sun) BUT Kr +xcess F_2 ---->no rexn (20°C)

FOR F: THE MAX O.N. OF FLUGRINE

IN COMPOUNDS 13 -1 (DY DEFINITION!)

DEMO FINALE

FOR SPRING

BREAK!!!!!

ACETONE PEROXIDE BATTLES
THE "GREEN DRAGON" FOR
FLAME AND GLORY.

LET'S
HOPE
THAT
OUR
GREEN
DRAEUN
DOES
THAT

IGNITION OF A TRAIL OF
ACETONE PEROXIDE MEETS
UP WITH A BALLOON
CONTAINING TRIMETHYLBORATE,
AKA, OUR RATHER WIMPY
VERSION OF THE "GREEN DRAGON"

DEMO GETS A GRADE OF C+- IT WAS TOO HOT!

FIETLE OUT
THE
THE
VIEH
USAT

HEY, ALL OF YOU
HAVE A FANTASTIC
BREAK!!! SOME OF
YOU MIGHT EVEN
"THINK GOOD

"YELLOW LIGHT,"

OVER WHELMS

"THINK GOOD THOUGHTS

OBSCURLS

ABOUT CHEMISTRY"

GREEN LIGHT!

FLAME FROM THE BALLOW WAS
A "HASDED-OUT" GASCH (MANNY YELLOW)

_ BUT WHEN THE GASON BALLOW BROKE,
LIGHED BOOMING DID GIVE A GASON FLAME
(ON THE CAST) AS IT BURNED, NO THE DENK