CHEM 1061-003 4 MAY 2015
WEEK 15 NOTES
(BECAUSE LECTURES 2
AND 3 OF THIS WEEK WILL BE
REVIEW OF THE PRACTICE
FINAL EXAM FROM 2014, THESE
ARE THE LAST NOTES)

PICK UP THE FINAL EXAM
ANNOUNCEMENT FROM LAST WEEK

TOPICS TODAY:
FINISH CH. 12 (WILL ONLY COVER
§ 12.3, 12.4, 12.5)

1.REVIEW ON FORCES OF ATTRACTIONS
IN CMPDS (AND ATOMIC SPECIES)

2.DIPOLE-DIPOLE ATTRACTIVE FORCES
a. NORMAL: BETWEEN POLAR MOLECULES
WITHOUT N-H, O-H, or F-H BONDS
b. SPECIAL: BETWEEN (USUALLY POLAR)
MOLECULES WITH N-H, O-H, or F-H
BONDS- "HYDROGEN BONDING"

LOTE WELL

CHEM 1061-003 FINAL EXAM INFO
SCHEDULED FOR 10:30 AM-12:30 PM ON WEDNESDAY,
MAY 13. 2015,ROOMS ASSIGNED ACCORDING TO
THE FIRST LETTER OF YOUR SURNAME (FAMILY NAME)

3. WATER, A UNIQUE SOLVENT

A-L Smith 100

M-Z STSS 220 (NOTE: NOT 230!!)

TEN POINT PENALTY IF YOU TAKE EXAM IN WRONG ROOM.
NOTE: IF YOU TAKE ANOTHER INSTRUCTOR'S EXAM
WITHOUT PERMISSION, YOU WILL FAIL THE EXAM

SURVEY OF INTERMOLECULAR OF FRONT! FORCES OF ATTRACTION(#)

3

FORMS

PARTIEL

PARTICIPATE

NO

FORCES

OF

ATTRACTION!

1. INDUCED DIPOLE-INDUCED DIPOLE OR LONDON DISPERSION FORCES, LD:

a. ACOUNT FOR THE FACT THAT EVEN
THE "MOST IDEAL" OF THE REAL
GASES, He AND H2, CONDENSE TO
FORM LIQUIDS AT SUFFICIENTLY LOW
TEMPS. NOT EXPLANCE UPTIL 1930

- FRITZ LONDON

b. BECOME STRONGER AS NON POLAR
MOLECULES ASSUME "LESS SPHERICAL"
AND "MORE ELONGATED" STRUCTURES;
I.E., LD FORCES OF ATTRACTION INCREASE
AS THE TOTAL SURFACE AREA OF THE
MOLECULE INCREASES-THEREBY ALLOWING
MORE INTERMOLECULAR CONTACTS

EXAMPLES: CONSIDER THE BOILING PTS, @ 1 ATM P, OF THE THREE ISOMERIC PENTANES:

Mbp +110°C

Mbp +110°C

Most spherical"

Least surface area

Smallest LD Forces

13 C & CACUS
13 C 11 C 18
13 C 1

My H

Nop + 35%

Thest "ELONGATED"

YIGUEST SURFACE AREA

LARGEST LD FORCES

c. LONDON DISPERSION FORCES INCREASE AS MOLECULES BECOME LARGER (I.E., SURFACE CONTACTS OF MOLECULES INCREASE) CMPDS BELOW ARE ALL NON POLAR AND CX4: X = H CI Br nbp(°C) -161 -128 +77 +190 Vg/mi) 154 16 **38** 332

(f/m) 16 08 154 332 EH4; E = C Si Ge Sn nbp(°C) -161 -112 -88 -52 MM 16 32 77 /23

YOU CONSIDER
THEIR TIME-AVERAGED
SHAPE DURING
ROPETON

NOTE: GRAVITATIONAL FORCES OF ATTRACTION ARE USUALLY TINY (AND INSIGNIFICANT) COMPARED TO INTERMOLECULAR ATTRACTIVE FORCES. THUS, FOR EXAMPLE, THE **BOILING POINT OF A SUBSTANCE** ONLY DEPENDS ON PRESSURE AND IS INDEPENDENT OF GRAVITY (AT LEAST ON EARTH, MARS, MOON, ETC.) BUT LIKELY NOT WHEN GRAVITATIONAL FORCES BECOME HUGE; E.G., NEAR A NEUTRON STAR! HOWEVER. ATMOSPHERIC PRESSURE ON EARTH IS A FUNCTION OF ALTITUDE (AND HENCE GRAVITY). THUS, THE bp OF WATER AT SEA LEVEL (1.00 ATM P) IS 100 °C BUT

AT THE TOP OF MT EVEREST, ~29,000 ft,

(~0.30 ATM P) IS ~ 70 °C. BUT, AT 1 ATM P, IT IS 100 °C ON THE MOON, MARS OR MN!

(CH4) (CF4) (CCU4) (Br4) (Br4) (133 pm 133 pm 133 pm 14 pm

C-X RADIUS LD FORCES OF ATTRACTION

d. CAN BECOME HUGE FOR MOLECULES

OF HIGH MOLECULAR MASS

FOR EXAMPLE:

CH4 n-C10H22 n-C20H42 n-C40H82

nbp(°C) -161 +174 +340 DEC(*) MM 16 142 282 562

(*)TOTAL LD FORCES ARE SO LARGE
THAT C-C BONDS OF C40H82 BREAK
BEFORE ENOUGH HEAT CAN BE ADDED
TO BOIL THIS MOLECULE AT 1 ATM. P!

MANY HYDROCARBONS AND OTHER
MOLECULES OF HIGH MOLECULAR
MASSES MUST BE DISTILLED AT
REDUCED PRESSURES (P << 1 ATM),
WHERE BOILING POINTS ARE LOWER,
TO PREVENT THERMAL DECOMPOSITION

MANY SUBSTANCES HAVE SUCH HIGH MOLECULAR MASSES (POLYMERS AND MANY BIOMOLECULES) THAT THEY CANNOT BE DISTILLED UNDER ANY CONDITIONS. THUS, ON HEATING THEY DECOMPOSE! THIS IS ALSO TRUE OF MANY SALTS, WHICH ARE EFFECTIVELY "IONIC POLYMERS"

2. DIPOLE-PIPOLE ATTRACTIVE FORCES.
BOTH NON POLAR AND POLAR MOLECULES
ARE ATTRACTED TO ONE-ANOTHER BY
LONDON DISPERSION FORCES, BUT IN ADDITION,
POLAR MOLECULES CAN PARTICIPATE IN OFTEN
STRONGER DIPOLE-DIPOLE FORCES OF
ATTRACTION.

THUS, IF NON POLAR AND
POLAR MOLECULES HAVE ABOUT THE SAME
SHAPE AND MOLECULAR MASS (SO LD
FORCES ARE ABOUT THE SAME), POLAR
MOLECULES WILL INVARIABLY HAVE
HIGHER BP's AT 1 ATM P: E.G.,

	SiH ₄	PH₃	SH ₂
	non-polar	weakly-polar	polar
ΔEN	0.3	0.1	0.4
nbp (°C)	-112	-88	-60
MM (g/moi)	32	34	34

DIPOLE-DIPOLE ATTRACTIVE FORCES IN PH3

DIPOLE - DIPOLE:

V Sey WEAK IN PHZ;

WIGHT CONTRIBUTE ~ 39. TO

OVSRALL INTERMOLECULAR INTERACTION.

DIPOLE-DIPOLE ATTRACTIVE FORCES INCREASE AS THE DIPOLE MOMENTS OR POLARITIES OF MOLECULES BECOME LARGER. EXAMPLES (WHEREIN LD FORCES ARE KEPT ABOUT THE SAME IN THE FOLLOWING PAIRS OF MOLECULES):

COMPARISON OF NORMAL BOILING
POINTS OF ALKANES, AMMONIA,
WATER, ALCOHOLS, AMINES, ETHERS
(OF ABOUT THE SAME SIZE, SHAPE,
AND MM TO MAINTAIN APPROX.
CONSTANT LD FORCES)

CH₄	NH_3	OH_2	FΗ

(°C)	DRAMATIC	HCCEAS	98N W 3		Tho?
nbp	-161	-33	+100	+20	Low
MM= (g/mol	16	17	18	20	ИНА
ΔEN	0.4	0.9	1.4	1.9	

CH3CH2CH3 CH3OCH3 CH3NHCH3 CH3CH2NH2 CH3CH2OH

MM	44	46	45	45	46
nbp	-42	-25	+7	+17	+78

CONCLUSION: HF and MOLECULES CONTAINING N-H AND O-H BONDS HAVE ABNORMALLY HIGH BOILING POINTS. THESE ARE DUE TO HYDROGEN BONDING, AN ESPECIALLY STRONG DIPOLE-DIPOLE INTER-ACTION, WHICH IS A PURELY COULOMBIC OR ELECTROSTATIC FORCE OF ATTRACTION.

SHOW
ICE CRYSTAL:
3 D INTERACTIONS
OF 140 MORECULU

REQUIREMENTS FOR HYDROGEN BONDING OR H-BONDING

a. MOLECULE MUST CONTAIN A VERY POLAR E-H BOND, WHERE ELEMENT E IS USUALLY N, O, or F, THE MOST ELECTRONEGATIVE ATOMS.

b. MOLECULE MUST CONTAIN N. O. or F ATOMS HAVING ONE OR MORE LONE PAIRS. E.G.,

a. COVALENTLY BOUND HYDROGEN IS VERY SMALL, HAS NO LONE PAIRS TO PREVENT CLOSE APPROACH OF N, O, or F

b. N. O. and F ARE VERY ELECTRONEGATIVE AND SMALL, SO THEY CAN CLOSELY APPROACH A RATHER POSITIVE H TO GIVE A QUITE STRONG DIPOLE-DIPOLE ATTRACTIVE FORCE. IT IS TOTAL BLISS!!!

INFLUENCE OF HYDROGEN BONDING
ON THE NORMAL BP's OF SIMPLE
HYDROGEN CMPDS OF THE CARBON,
NITROGEN, OXYGEN, AND FLUORINE
FAMILIES OF ELEMENTS
ONLY EH4 MOLECULES ARE NON POLAR

ROW OF PERIODIC TABLE

OF THISE MOLEOUSS,

ONLY NH3. H2O. AND HF PARTICIPATE IN
HYDROGEN BONDING IN THE LIQUID
PHASE. ALL OTHERS ARE ONLY ASSOCIATED BY
DIPOLE-DIPOLE AND/OR LD ATTRACTIVE FORCES

IMPORTANT GUIDELINE ON H-BONDING:
THE CLOSEST INTERMOLECULAR
CONTACTS POSSIBLE FOR HYDROGEN
AND N. O. OR F ARE MUCH SHORTER THAN
THOSE OF ATOMS IN OTHER POLAR BONDS:
FOR EXAMPLE: COMPARISON OF THE
DIPOLE-DIPOLE ATTRACTIVE FORCES IN
METHYL FLUORIDE, CH3F, VS CH3OH.
(ESPECIALLY INTERESTING SINCE CH3F
HAS THE HIGHER DIPOLE MOMENT,µ,
OF THE TWO MOLECULES!)

(CH₃F	CH ₃ C	Н	
nbp(°C) MM(g/mol) µ (Debye)		+65 32 1.70	Δ (MBP):	143 C°

WE SAY THAT METHYL ALCOHOL IS A
MUCH MORE STRONGLY ASSOCIATED
LIQUID THAN METHYL FLUORIDE BECAUSE
ITS INTERMOLECULAR FORCES OF
ATTRACTION ARE MUCH STRONGER,
LEADING TO THE SIGNIFICANTLY HIGHER
BOILING POINT. WHY ARE THEY STRONGER?

INTERMOLECULAR FORCES OF ATTRACTION IN CH3F VS CH3OH
THE MOST POLAR BOND IS
PRESENT IN CH3F, WHERE THE
C-F BOND IS MORE POLAR (\(\Delta\text{E}\text{N}\)
= 1.5) THAN EITHER THE O-H
(\(\Delta\text{E}\text{N} = 1.4\) OR the C-O BOND
(\(\Delta\text{E}\text{N} = 1.0\) IN CH3OH. BUT THE
SHORTEST POSSIBLE INTERMOLECULAR
C---F CONTACT IN CH3F IS MUCH
LONGER THAN THE RELATED
O----H CONTACT IN CH3OH.

THE BOTTOM LINE IS THAT CH3OH
"WINS OUT" OVER CH3F BECAUSE
"d" IS MUCH SMALLER FOR CH3OH.
THIS EXAMPLE EMPHASIZES WHY
H- BONDING IS UNIQUE AMONG DIPOLEDIPOLE INTERACTIONS, OWING TO THE
VERY SMALL SIZE OF ATOMIC HYDROGEN
WHEN BOUND TO NON-METALS.

ON HONDON!

FINAL TOPIC: WATER, A UNIQUE SOLVENT

THE SMALL
SIZE
OF HZO
AND
HIGHLY
POLAR
CHARACTOR
OF
DON'DS
ARE
IMPORTANT

DEAR!

1. WATER IS UNUSUALLY EFFECTIVE IN DISSOLVING BOTH IONIC AND NON IONIC SUBSTANCES (ESPECIALLY ORGANIC MOLECULES CONTAINING N AND O ATOMS OR BETTER, NH OR OH GROUPS) DUE TO ITS ABILITY TO SOLVATE BOTH CATIONS, E.G.,

AND NEUTRAL MOLECULES CONTAINING VERY POLAR BONDS, SUCH AS CO2

DOUBLE-EDGED SWORD: RELATIVELY PURE WATER IS A PRECIOUS COMMODITY BECAUSE IT DISSOLVES PRACTICALLY EVERYTHING TO SOME DEGREE-EVEN TOXIC MERCURY METAL HAS A SMALL SOLUBILITY IN WATER, 56 μg/L at 25°C (from Merck Index, 12th ed, 1996, p. 5953)

DISSOLVING OF SODIUM CHLORIDE IN WATER, A REVERSIBLE CHEMICAL REXN!

(SIMILAR DIAGRAM IN TEXT, FIG. 4.2, P. 136)

Naclous the Nation + Cap + Cap (and)

"Na "

Na (and)

Na (and)

Figure 10.35

Cubic closest packing in NaCl

* May BE 4 , BUT

Steven S. Zumdahl, Chemistry, Third Edition, © 1993 by D. C. Heath and Company

FOR NEUTRAL ORGANIC MOLECULES TO HAVE GOOD SOLUBILITY IN WATER THEY MUST CONTAIN NITROGEN OR OXYGEN ATOMS SINCE FUNCTIONAL GROUPS CONTAINING THESE ATOMS CAN FORM HYDROGEN BONDS TO WATER. FOR EXAMPLE, ACETONE, WHICH IS TOTALLY MISCIBLE (OR SOLUBLE IN ALL PROPORTIONS) WITH WATER.

ACETONE CANNOT FROM HYDROGEN
BONDS TO ITSELF, BUT IT CAN
EFFECTIVELY "BREAK INTO THE
H-BONDED NETWORK OF WATER" BY
FORMING H-BONDS TO WATER.

THESE FUNCTIONAL GROUPS ARE CALLED "HYDROPHILIC" (WATER-LOVING) BECAUSE THEY HAVE OXYGEN OR NITROGEN ATOMS WHICH CAN FORM H-BONDS WITH WATER. ALCOHOLS, AMINES, CARBOXYLIC ACIDS AND OTHER CMPDS WITH O-H OR N-H BONDS ARE EVEN MORE HYDROPHILIC (AND MORE SOLUBLE IN WATER) BECAUSE THEY CAN BOTH DONATE AND ACCEPT H-BONDS. E.G.,

R-OH

ALCOHOLS

R-O-R

ETHERS F

R-C(O)H

ALDEHYDES

R-C(O)R

KETONES

R-C(O)OH

CARBOXYLIC ACIDS

R-C(0)OR'

ESTERS

R-C(O)NR'2 AMIDES

R-NH₂

R-NHR'

AMINES

More Solvers Trap

MANY ETHUS

ARE ONLY

PARTICILLY

R-NR'2

R-NH3(+)

AMMONIUM IONS

AM, NES

R-NO₂

NITRO CMPDS

الم الم

R-CN

NITRILES

LOVING LADROPHIC

CILENK

MOLECULES

HYDROCARBON GROUPS ARE CLASSIC
"HYDROPHOBIC" UNITS (WATER HATING OR
FEAR OF WATER) SINCE THEY ARE UNABLE
TO PARTICIPATE IN HYDROGEN BONDING.
THE C-C AND C-H GROUPS ARE SO WEAKLY
OR NON POLAR THAT THEY CANNOT
"BREAK INTO THE H-BONDED NETWORK
OF WATER". ALSO, ORGANIC HALIDES, EVEN
ORGANIC FLUORIDES, CANNOT FORM
EFFECTIVE H-BONDS WITH WATER. AS A
RESULT, THE FOLLOWING MOLECULES
(AND SIMILAR SPECIES) ARE POORLY
SOLUBLE IN WATER:

PRESENCE OF LARGE (OR LONG)
HYDROPHOBIC GROUPS BOUND TO
HYDROPHILIC UNITS REDUCES THE
SOLUBILITY OF ORGANIC MOLECULES
IN WATER

EXAMPLES SOLUB. IN WATER
ALCOHOLS fully

CH₃OH, C₂H₅OH, C₃H₇OH miscible

CH₃CH₂CH₂CH₂OH limited

RC(O)OH (CARBOXYLIC ACIDS)

R = CH3, C2H5, C3H7 miscible

CH₃CH₂CH₂C(O)OH limited

C4H9 mion

Na(+) C4H9CO2(-) very soluble

Sodium SALT OF (forms micelles)

A LONG CHAIR CALLS YNLATE IN

HYDROPHILIC AND HYDROPHOBIC
GROUPS IN WATER SOLUBLE
"GLOBULAR" PROTEINS PLAY AN
IMPORTANT ROLE IN DETERMINING THE
3D STRUCTURE AND PROPERTIES OF
THESE IMPORTANT BIOMOLECULES

INTERESTING CHARACTERISTIC OF AQUEOUS SOLUTIONS OF SOAP: FORMATION OF MICELLES:

LONG HYDROPHOBIC
HYDROCARBON CHAIN
DISSOLVES IN NONOR WEAKLY POLAR
ORGANIC SOLVENTS

HYDROPHILIC CARBOXYLATE
DISSOLVES IN
WATER AND OTHER
QUITE POLAR SOLVENTS

MICELLE FORMATION (AKIN TO A WATER SOLUBLE GLOBULAR PROTEIN). NICE EXAMPLE OF "LIKES DISSOLVE LIKES"

SOAP MICELLE

INTERIOR NON POLAR HYDROCARBON CHAINS "DISSOLVE" EACH OTHER (AND TRAP GREASE)

DEMO FINALE: "THE GROWLING GUMMY BEAR"

IN THIS DEMOMR. GUMMY BEAR WILL GIVE HIS ALL FOR SCIENCE!

THE REACTION SHOWS THE GREAT REACTIVITY OF POTASSIUM CHLORATE, KCIO₃, A COMMON INGREDIENT IN FIREWORKS.

GUMMY BEAR: MAINLY A MIX OF GLUCOSE/FRUCTOSE, C6 H12O6 THE KCLO3 MUST BE MELTED, mp ~368°C, TO INITIATE THE REXN